相電圧と線間電圧

your browser does not support HTML5 Canvas.

フェーザのみ表示  両方  波形のみ表示

相電圧と線間電圧には \begin{align} v_{ab}(t)=&e_a(t)-e_b(t)\\ v_{bc}(t)=&e_b(t)-e_c(t)\\ v_{ca}(t)=&e_c(t)-e_a(t)\\ \end{align} の関係がある。相電圧が \begin{align} e_a(t)=&E_m \sin (\omega t)\\ e_b(t)=&E_m \sin \biggr(\omega t - \frac{2\pi}{3}\biggr)\\ e_c(t)=&E_m \sin \biggr(\omega t - \frac{4\pi}{3}\biggr) \end{align} であるときの線間電圧は \begin{align} v_{ab}(t)=&e_a(t)-e_b(t)\\ =&E_m \sin (\omega t)-E_m \sin \biggr(\omega t - \frac{2\pi}{3}\biggr)\\ =&E_m \sin (\omega t)-E_m \biggr\{ \sin (\omega t)\cos \biggr(\frac{2\pi}{3}\biggr)-\cos (\omega t)\sin \biggr(\frac{2\pi}{3}\biggr)\biggr\}\\ =&E_m \sin (\omega t)-E_m \biggr\{ -\frac{1}{2}\sin (\omega t)-\frac{\sqrt{3}}{2}\cos (\omega t)\biggr\}\\ =&E_m \biggr\{\frac{3}{2}\sin (\omega t)+\frac{\sqrt{3}}{2}\cos (\omega t)\biggr\}\\ =&\sqrt{3}E_m \biggr\{\frac{\sqrt{3}}{2}\sin (\omega t)+\frac{1}{2}\cos (\omega t)\biggr\}\\ =&\sqrt{3}E_m \biggr\{ \sin (\omega t)\cos \biggr(\frac{\pi}{6}\biggr)+\cos (\omega t)\sin \biggr(\frac{\pi}{6}\biggr)\biggr\}\\ =&\sqrt{3}E_m\sin \biggr(\omega t + \frac{\pi}{6}\biggr) \end{align} となり,同様に \begin{align} v_{bc}(t)=&e_b(t)-e_c(t)\\ =&\sqrt{3}E_m\sin \biggr(\omega t - \frac{2\pi}{3}+ \frac{\pi}{6}\biggr) \end{align} \begin{align} v_{ca}(t)=&e_c(t)-e_a(t)\\ =&\sqrt{3}E_m\sin \biggr(\omega t - \frac{4\pi}{3}+ \frac{\pi}{6}\biggr) \end{align} となる。線間電圧は相電圧の\(\sqrt{3}\)倍の大きさと位相が\(\pi/6\)[rad]進む。



平衡三相回路Y形-Y型

ホームに戻る